34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic analysis of infectious diseases: estimating gene effects for susceptibility and infectivity

      research-article
      , ,
      Genetics, Selection, Evolution : GSE
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Genetic selection of livestock against infectious diseases can complement existing interventions to control infectious diseases. Most genetic approaches that aim at reducing disease prevalence assume that individual disease status (infected/not-infected) is solely a function of its susceptibility to a particular pathogen. However, individual infectivity also affects the risk and prevalence of an infection in a population. Variation in susceptibility and infectivity between hosts affects transmission of an infection in the population, which is usually measured by the value of the basic reproduction ratio R 0 . R 0 is an important epidemiological parameter that determines the risk and prevalence of infectious diseases. An individual’s breeding value for R 0 is a function of its genes that influence both susceptibility and infectivity. Thus, to estimate the effects of genes on R 0 , we need to estimate the effects of genes on individual susceptibility and infectivity. To that end, we developed a generalized linear model (GLM) to estimate relative effects of genes for susceptibility and infectivity. A simulation was performed to investigate bias and precision of the estimates, the effect of R 0 , the size of the effects of genes for susceptibility and infectivity, and relatedness among group mates on bias and precision. We considered two bi-allelic loci that affect, respectively, the individuals’ susceptibility only and individuals’ infectivity only.

          Results

          A GLM with complementary log–log link function can be used to estimate the relative effects of genes on the individual’s susceptibility and infectivity. The model was developed from an equation that describes the probability of an individual to become infected as a function of its own susceptibility genotype and infectivity genotypes of all its infected group mates. Results show that bias is smaller when R 0 ranges approximately from 1.8 to 3.1 and relatedness among group mates is higher. With larger effects, both absolute and relative standard deviations become clearly smaller, but the relative bias remains the same.

          Conclusions

          We developed a GLM to estimate the relative effect of genes that affect individual susceptibility and infectivity. This model can be used in genome-wide association studies that aim at identifying genes that influence the prevalence of infectious diseases.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: not found
          • Book: not found

          Introduction to Quantitative Genetics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis

            Tuberculosis (TB) caused by Mycobacterium bovis is a re-emerging disease of livestock that is of major economic importance worldwide, as well as being a zoonotic risk. There is significant heritability for host resistance to bovine TB (bTB) in dairy cattle. To identify resistance loci for bTB, we undertook a genome-wide association study in female Holstein–Friesian cattle with 592 cases and 559 age-matched controls from case herds. Cases and controls were categorised into distinct phenotypes: skin test and lesion positive vs skin test negative on multiple occasions, respectively. These animals were genotyped with the Illumina BovineHD 700K BeadChip. Genome-wide rapid association using linear and logistic mixed models and regression (GRAMMAR), regional heritability mapping (RHM) and haplotype-sharing analysis identified two novel resistance loci that attained chromosome-wise significance, protein tyrosine phosphatase receptor T (PTPRT; P=4.8 × 10−7) and myosin IIIB (MYO3B; P=5.4 × 10−6). We estimated that 21% of the phenotypic variance in TB resistance could be explained by all of the informative single-nucleotide polymorphisms, of which the region encompassing the PTPRT gene accounted for 6.2% of the variance and a further 3.6% was associated with a putative copy number variant in MYO3B. The results from this study add to our understanding of variation in host control of infection and suggest that genetic marker-based selection for resistance to bTB has the potential to make a significant contribution to bTB control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Design and analysis of an Actinobacillus pleuropneumoniae transmission experiment.

              This paper describes a methodology to quantify the transmission of Actinobacillus (A.) pleuropneumoniae from subclinically infected carrier pigs to susceptible contact pigs, and to test the effect of possible interventions on the transmission. The methodology includes the design of a transmission experiment, and a method with which A. pleuropneumoniae transmission can be quantified and with which the effect of an intervention on the transmission can be tested. The experimental design consists of two parts. First, subclinically infected carrier pigs are created by contact exposure of specific-pathogen-free pigs to endobronchially inoculated pigs. Second, transmission is observed from the group of carrier pigs to a second group of susceptible contact pigs after replacing the inoculated pigs by new contact pigs. The presented analytical method is a generalised linear model (GLM) with which the effect of an intervention on the susceptibility and infectivity can be tested separately, if the transmission is observed in heterogeneous populations. The concept of the experimental transmission model is illustrated by describing an A. pleuropneumoniae transmission experiment in which the effect of vaccination on the susceptibility is quantified. Although it could not be demonstrated that vaccination has an effect on the susceptibility of pigs, it was demonstrated that nasal excretion of A. pleuropneumoniae is related to the infectivity of pigs.
                Bookmark

                Author and article information

                Contributors
                mahlet.anche@wur.nl , mahlet.teka@gmail.com
                piter.bijma@wur.nl
                mart.dejong@wur.nl
                Journal
                Genet Sel Evol
                Genet. Sel. Evol
                Genetics, Selection, Evolution : GSE
                BioMed Central (London )
                0999-193X
                1297-9686
                4 November 2015
                4 November 2015
                2015
                : 47
                : 85
                Affiliations
                [ ]Animal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, The Netherlands
                [ ]Quantitative Veterinary Epidemiology Group, Wageningen University, 6700 AH Wageningen, The Netherlands
                Article
                163
                10.1186/s12711-015-0163-z
                4634202
                26537023
                f20b5405-8d89-4b3e-b8d7-f05b3c37c082
                © Anche et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 December 2014
                : 16 October 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Genetics
                Genetics

                Comments

                Comment on this article