58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unmet Expectations: miR-34 Plays No Role in p53-Mediated Tumor Suppression In Vivo

      research-article
      * ,
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In vivo modeling of tumor suppressor p53 functions and regulation has a history of unexpected and even enigmatic outcomes [1], despite the status of p53 as the most frequently mutated gene or dysfunctional pathway in human cancers [2], [3]. Beginning with the surprising viability of the first mice deleted for Trp53 [4], [5], various hypotheses of compensation, cell type–specificity, stimulus-dependent response, or modifier influences were posed to explain how an exquisitely regulated transcription factor, implicated in a vast array of pathways [6], appeared to have no impact on development. Limited background-specific developmental and fertility problems do occur, especially in female p53-null mice [7], [8], and deletion of potentially compensatory p53 family members, p63 and p73 isoforms, leads to profound developmental and tissue-specific phenotypes [9], [10]. But overall, the most striking result of p53 loss in vivo is early tumor predisposition in p53−/− mice, which lack genomic surveillance provided by p53-mediated regulation of cell cycle arrest, apoptosis, and senescence. As reported by Concepcion et al. in this issue of PLoS Genetics [11], expectations built on cell-based studies of p53 response are again unrealized in mouse models. Previously, multiple in vitro analyses suggested that microRNA (miR)-34 family members are important players in a p53-regulated network of genomic surveillance [12]–[17] (Table 1). Together, these studies strongly supported the view that p53 response to multiple stimuli depended on miR-34, and that ectopic expression of miR-34 was sufficient to elicit p53 response, consistent with miR-34 functioning as a bonafide tumor suppressor. However, Concepcion et al. report that complete inactivation of the entire family of miR-34 genes (miR-34a/b/c) or knockout of each individual miR-34 gene in mice leads to little or no change in p53-mediated functions in tumor suppression [11]. 10.1371/journal.pgen.1002859.t001 Table 1 A list of different in vitro and in vivo model systems used to study miR-34 functions. Model System Description miR-34 Functional Outcome Ref. mESCs Mouse embryonic stem cells Genetrap-mediated deletion Decreased spontaneous apoptosis during differentiation [12] NSCLCs Non-small cell lung cancer cells Overexpression Inhibits growth [12] SW480 p53 mutant colon cancer cells Overexpression G1-arrest [12] Wi38 Human diploid fibroblasts Depletion Protection from Staurosporine-induced apoptosis [12] IMR90 Primary lung fibroblasts Overexpression Growth inhibition (G1 and G2 arrest), and senescence [13] A549 Human alveolar adenocarcinoma cells Overexpression G1-arrest [13] HCT116 Human colon cancer cells Overexpression G1-arrest [13] TOV21G Human ovarian cancer cells Overexpression G1-arrest [13] MEFs Mouse embryonic fibroblasts Overexpression Apoptosis [13] H1299 Human lung cancer cells Overexpression Reduced colony formation [14] U2OS Human osteosarcoma cells Depletion Reduction in Etoposide-induced apoptosis [14] HCT116 (p53+/+ or p53−/−) Human colon cancer cells Long-term overexpression Apoptosis [15] HCT116, RKO Human colon cancer cells Overexpression Suppression of proliferation and induction of senescence [16] Mouse xenograft model HCT116 or RKO cells were inoculated into nude mice Subcutaneous administration of miR-34a/atelocollagen complexes Suppression of cell proliferation and reduction in tumor volume [16] H1299 Human lung cancer cells Overexpression Apoptosis [17] U2OS Human osteosarcoma cells Overexpression G1-arrest and reduction in colony formation [17] MiaPaCa2, BxPC3 p53 mutant human pancreatic cancer cell lines Overexpression Inhibited clonogenic cell growth and invasion, induced apoptosis and G1 and G2 arrest; sensitized the cells to chemotherapy and radiation [34] OSN1, OSN2 Neoplastic epithelial ovarian cells Overexpression Suppression of proliferation and reduced colony formation [35] Kelly, NGP Neuroblastoma cells with MYCN amplification (+MNA) Overexpression Reduction in proliferation and increased apoptosis [36] SK-N-AS Neuroblastoma cells without MYCN amplification (-MNA) Overexpression Reduction in proliferation and increased apoptosis [36] Mouse mir34a−/−; mir34b/c−/− miR-34 knockout mouse in C57BL/6 background Germline deletion of miR-34 Efficient reprogramming, no effect on proliferation [30] Mouse mir34TKO miR-34 knockout mouse in129SvJae and C57BL/6 mixed background Germline deletion of miR-34 Normal p53 activity [11] Interest in a miR-34 axis as mediator of p53-response begins with the niche that miRNAs fill in regulation of RNA expression. miRNAs are small, regulatory non-coding RNAs that generally mediate post-transcriptional silencing of a number of specific target mRNAs [18]. More than 50% of human miRNA genes are found within cancer-associated or fragile sites of the genome, which suggests that miRNAs play essential roles in tumorigenesis [19]. The identification of miRNAs as regulatory targets of p53 [20] suggested their potential involvement in tumor suppression, and expanded the repertoire of p53 downstream targets to both coding and non-coding genes. Further, the view that p53 both positively and negatively regulates gene expression could now rely on increased expression of miRNAs as a mechanism for p53-mediated, indirect repression of gene expression [13], [20], in addition to the few documented cases of direct repression by p53 binding to chromatin [21]–[25]. The members of the evolutionarily conserved miR-34 family, which arise from three different transcripts at two different gene loci in vertebrates, were the first of several non-coding RNAs identified as directly activated by p53 in response to genotoxic stress [13], [26]. miR-34a is at 1p36, a region commonly deleted in tumors, and miR-34b and miR-34c share a common primary transcript arising from 11q23 [27], [28]. miR-34a, b, and c are expressed at very low levels in several types of cancers [28]. Previous reports show that p53 directly activates miR-34a/b/c expression and, dependent on cellular context, they act downstream of p53 in mediating cell cycle arrest or apoptosis [29]. The current list of validated miR-34 downstream targets includes several genes that are repressed during cell cycle arrest or apoptosis when p53 is activated [28]. Given the rationale provided by these studies in cultured cells (Table 1), multiple laboratories created genetic knockout models of either miR-34a or miR-34b/c, or a compound mutant animal harboring homozygous deletion of all three miR-34 family members (miR-34TKO) [11], [30]. Surprisingly, mice bearing the miR-34 deletion(s) developed normally, are born at the expected Mendelian ratio, and are fertile [11]. The authors subjected the mice and derived mouse embryonic fibroblasts (MEFs) to a battery of tests to assess any impact on p53-dependent tumor suppression. MEFs obtained from mir-34TKO mice have a slightly higher proliferation rate, but reach senescence with kinetics similar to wild-type MEFs. In response to genotoxic threats, miR-34–deficient MEFs are indistinguishable from wild type: they undergo p53-dependent cell cycle arrest and apoptosis. With ectopic expression of oncogenic K-Ras, p53-deficient MEFs are readily transformed, which is not true of K-Ras–expressing miR-34−/− MEFs. In the intact mouse, the story is similar: aging cohorts of mir-34TKO mice remain healthy with no spontaneous tumors, in contrast to p53-null mice [4]. In fact, miR-34–deficient mice remain remarkably healthy and tumor-free for at least 60 weeks after irradiation. Assays of apoptosis in response to irradiation proved positive in tissues of these mice, which additionally exhibited no acceleration of tumor progression in Eμ-models of B-cell lymphomagenesis. All of these assessments of p53 functions in vivo undermine the view that miR-34 functions as a tumor suppressor or is an essential component of the p53-tumor suppression network. Although miR-34 proved nonessential in the most highly studied examples of p53 function (senescence, cell cycle arrest, apoptosis, and tumor suppression), it remains possible that miR-34 is involved in other p53-influenced processes, such as metabolism, autophagy, stem cell quiescence, differentiation, and embryogenesis [6]. For example, specific links between miR-34– and p53-regulated functions have been forged in stem cells [26]. miR-34–deficient MEFs are more efficiently reprogrammed to induced pluripotent stem cells (iPSCs), by expression of pluripotency factors and c-myc [30], compared to wild-type counterparts. While this study of miR-34 as a barrier to reprogramming does not establish a direct tie to p53, it complements multiple reports that depletion of p53 or dysfunctional p53 pathways enhance the efficiency of reprogramming differentiated, somatic cells to iPSCs [31]. Recently, we showed that p53 promotes human embryonic stem cell differentiation by direct activation of p21 and miRNAs, including miR-34a, which repress pluripotency factors and SIRT1 [32]. Taken together, these results indicate that miR-34 has pro-differentiation effects in maintenance of nontransformed, somatic cells, some of which are p53-dependent. In the future, miR-34–deficient mouse models will be valuable in addressing whether miR-34 functions downstream of p53 in a tissue- and/or context-specific manner. miR-34a, miR-34b, and miR-34c share the same seed sequence and target the same RNAs, although differences in target accessibility or binding affinities may dictate their effectiveness. Genome-wide expression analysis may be needed to determine family member–specific effects, such as the reported regulation of c-MYC by miR-34b/c and not miR-34a [33]. Questions of specificity in gene targets for each member of a miRNA family and potential compensation by other miRNAs may be addressed by studies in these and other miRNA mouse models, perhaps still under development. Non-coding RNAs are thought to act in networks that impact diverse cellular pathways, suggesting considerable challenges ahead in asking the right questions and understanding the functional significance of these RNAs.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional control of human p53-regulated genes.

          The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p53 mutations in human cancers.

            Mutations in the evolutionarily conserved codons of the p53 tumor suppressor gene are common in diverse types of human cancer. The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues. Analysis of these mutations can provide clues to the etiology of these diverse tumors and to the function of specific regions of p53. Transitions predominate in colon, brain, and lymphoid malignancies, whereas G:C to T:A transversions are the most frequent substitutions observed in cancers of the lung and liver. Mutations at A:T base pairs are seen more frequently in esophageal carcinomas than in other solid tumors. Most transitions in colorectal carcinomas, brain tumors, leukemias, and lymphomas are at CpG dinucleotide mutational hot spots. G to T transversions in lung, breast, and esophageal carcinomas are dispersed among numerous codons. In liver tumors in persons from geographic areas in which both aflatoxin B1 and hepatitis B virus are cancer risk factors, most mutations are at one nucleotide pair of codon 249. These differences may reflect the etiological contributions of both exogenous and endogenous factors to human carcinogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              p63 is a p53 homologue required for limb and epidermal morphogenesis.

              The p53 tumour suppressor is a transcription factor that regulates the progression of the cell through its cycle and cell death (apoptosis) in response to environmental stimuli such as DNA damage and hypoxia. Even though p53 modulates these critical cellular processes, mice that lack p53 are developmentally normal, suggesting that p53-related proteins might compensate for the functions of p53 during embryogenesis. Two p53 homologues, p63 and p73, are known and here we describe the function of p63 in vivo. Mice lacking p63 are born alive but have striking developmental defects. Their limbs are absent or truncated, defects that are caused by a failure of the apical ectodermal ridge to differentiate. The skin of p63-deficient mice does not progress past an early developmental stage: it lacks stratification and does not express differentiation markers. Structures dependent upon epidermal-mesenchymal interactions during embryonic development, such as hair follicles, teeth and mammary glands, are absent in p63-deficient mice. Thus, in contrast to p53, p63 is essential for several aspects of ectodermal differentiation during embryogenesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2012
                July 2012
                26 July 2012
                03 August 2012
                : 8
                : 7
                : e1002859
                Affiliations
                [1]Program in Genes and Development, Center for Stem Cell and Development Biology, Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
                Cincinnati Children's Hospital Medical Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Article
                PGENETICS-D-12-01477
                10.1371/journal.pgen.1002859
                3411369
                22870065
                44e439f2-656c-4354-a745-d0181cf7f9a3
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Pages: 3
                Funding
                The authors received no specific funding for this article.
                Categories
                Perspective
                Biology
                Genetics
                Cancer Genetics
                Gene Function
                Model Organisms
                Animal Models
                Mouse

                Genetics
                Genetics

                Comments

                Comment on this article