Blog
About

49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Global spread of dengue virus types: mapping the 70 year history

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • The geography of type-specific global DENV circulation has not been well described.
          • We map the global distribution and co-circulation of each DENV type from 1943 to 2013.
          • Detection of all types has expanded worldwide together with growing hyperendemicity.
          • There remains a dearth of type-specific information in many parts of the world.

          Abstract

          Since the first isolation of dengue virus (DENV) in 1943, four types have been identified. Global phenomena such as urbanization and international travel are key factors in facilitating the spread of dengue. Documenting the type-specific record of DENV spread has important implications for understanding patterns in dengue hyperendemicity and disease severity as well as vaccine design and deployment strategies. Existing studies have examined the spread of DENV types at regional or local scales, or described phylogeographic relationships within a single type. Here we summarize the global distribution of confirmed instances of each DENV type from 1943 to 2013 in a series of global maps. These show the worldwide expansion of the types, the expansion of disease hyperendemicity, and the establishment of an increasingly important infectious disease of global public health significance.

          Related collections

          Most cited references 66

          • Record: found
          • Abstract: found
          • Article: not found

          The global distribution and burden of dengue

          Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes 1 . For some patients dengue is a life-threatening illness 2 . There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread 3 . The contemporary worldwide distribution of the risk of dengue virus infection 4 and its public health burden are poorly known 2,5 . Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanisation. Using cartographic approaches, we estimate there to be 390 million (95 percent credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of clinical or sub-clinical severity). This infection total is more than three times the dengue burden estimate of the World Health Organization 2 . Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help guide improvements in disease control strategies using vaccine, drug and vector control methods and in their economic evaluation. [285]
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Present and future arboviral threats.

            Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV, especially BTV-8, invaded Europe after climate warming and enabled the major midge vector to expand is distribution northward into southern Europe, extending the transmission season and vectorial capacity of local midge species. Perhaps the greatest health risk of arboviral emergence comes from extensive tropical urbanization and the colonization of this expanding habitat by the highly anthropophilic (attracted to humans) mosquito, Aedes aegypti. These factors led to the emergence of permanent endemic cycles of urban DENV and CHIKV, as well as seasonal interhuman transmission of yellow fever virus. The recent invasion into the Americas, Europe and Africa by Aedes albopictus, an important CHIKV and secondary DENV vector, could enhance urban transmission of these viruses in tropical as well as temperate regions. The minimal requirements for sustained endemic arbovirus transmission, adequate human viremia and vector competence of Ae. aegypti and/or Ae. albopictus, may be met by two other viruses with the potential to become major human pathogens: Venezuelan equine encephalitis virus, already an important cause of neurological disease in humans and equids throughout the Americas, and Mayaro virus, a close relative of CHIKV that produces a comparably debilitating arthralgic disease in South America. Further research is needed to understand the potential of these and other arboviruses to emerge in the future, invade new geographic areas, and become important public and veterinary health problems. Copyright 2009 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century

              Dengue fever/dengue hemorrhagic fever is now one of the most important public health problems in tropical developing countries and also has major economic and societal consequences.
                Bookmark

                Author and article information

                Contributors
                Journal
                Trends Microbiol
                Trends Microbiol
                Trends in Microbiology
                Elsevier Trends Journals
                0966-842X
                1878-4380
                1 March 2014
                March 2014
                : 22
                : 3
                : 138-146
                Affiliations
                [1 ]Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
                [2 ]Department of Entomology, University of California Davis, Davis, California 95616, USA
                [3 ]Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA
                [4 ]Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
                [5 ]Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
                [6 ]Centre for Tropical Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
                [7 ]Nossal Institute of Global Health, University of Melbourne, Parkville, Victoria, Australia
                Article
                S0966-842X(13)00273-4
                10.1016/j.tim.2013.12.011
                3946041
                24468533
                © 2014 Elsevier Ltd.

                This document may be redistributed and reused, subject to certain conditions.

                Categories
                Review

                Microbiology & Virology

                serotypes, dengue

                Comments

                Comment on this article