26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polyploidy in myelofibrosis: analysis by cytogenetic and SNP array indicates association with advancing disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Myelofibrosis occurs as primary myelofibrosis or as a late occurrence in the evolution of essential thrombocythaemia and polycythaemia vera. It is the rarest of the three classic myeloproliferative neoplasms (MPN). Polyploidy has only rarely been reported in MPN despite the prominent involvement of abnormal megakaryocytes. The use of peripheral blood samples containing increased numbers of haematopoietic progenitors has improved the output from cytogenetic studies in myelofibrosis and together with the use of single nucleotide polymorphism arrays (SNPa) has contributed to an improved knowledge regarding the diverse genetic landscape of this rare disease.

          Results

          Cytogenetic studies performed on a consecutive cohort of 42 patients with primary or post ET/PV myelofibrosis showed an abnormal karyotype in 24 cases and of these, nine showed a polyploid clone. Six of the nine cases showed a tetraploid (4n) subclone, whereas three showed mixed polyploid subclones with both tetraploid and octoploid (4n/8n) cell lines. The abnormal clone evolved from a near diploid karyotype at the initial investigation to a tetraploid karyotype in follow-up cytogenetic analysis in four cases. In total, six of the nine polyploid cases showed gain of 1q material. The remaining three cases showed polyploid metaphases, but with no detectable structural karyotypic rearrangements. Three of the nine cases showed chromosome abnormalities of 6p, either at diagnosis or later acquired. SNPa analysis on eight polyploid cases showed additional changes not previously recognised by karyotype analysis alone, including recurring changes involving 9p, 14q, 17q and 22q. Except for gain of 1q, SNPa findings from the polyploid group compared to eight non-polyploid cases with myelofibrosis found no significant differences in the type of abnormality detected.

          Conclusions

          The study showed the use of peripheral blood samples to be suitable for standard karyotyping evaluation and DNA based studies. The overall profile of abnormalities found were comparable with that of post-MPN acute myeloid leukaemia or secondary myelodysplastic syndrome and cases in the polyploidy group were associated with features of high risk disease. The above represents the first documented series of polyploid karyotypes in myelofibrosis and shows a high representation of gain of 1q.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells.

          Micronuclei (MN) and other nuclear anomalies such as nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) are biomarkers of genotoxic events and chromosomal instability. These genome damage events can be measured simultaneously in the cytokinesis-block micronucleus cytome (CBMNcyt) assay. The molecular mechanisms leading to these events have been investigated over the past two decades using molecular probes and genetically engineered cells. In this brief review, we summarise the wealth of knowledge currently available that best explains the formation of these important nuclear anomalies that are commonly seen in cancer and are indicative of genome damage events that could increase the risk of developmental and degenerative diseases. MN can originate during anaphase from lagging acentric chromosome or chromatid fragments caused by misrepair of DNA breaks or unrepaired DNA breaks. Malsegregation of whole chromosomes at anaphase may also lead to MN formation as a result of hypomethylation of repeat sequences in centromeric and pericentromeric DNA, defects in kinetochore proteins or assembly, dysfunctional spindle and defective anaphase checkpoint genes. NPB originate from dicentric chromosomes, which may occur due to misrepair of DNA breaks, telomere end fusions, and could also be observed when defective separation of sister chromatids at anaphase occurs due to failure of decatenation. NBUD represent the process of elimination of amplified DNA, DNA repair complexes and possibly excess chromosomes from aneuploid cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis.

            The mitotic checkpoint is a major cell cycle control mechanism that guards against chromosome missegregation and the subsequent production of aneuploid daughter cells. Most cancer cells are aneuploid and frequently missegregate chromosomes during mitosis. Indeed, aneuploidy is a common characteristic of tumours, and, for over 100 years, it has been proposed to drive tumour progression. However, recent evidence has revealed that although aneuploidy can increase the potential for cellular transformation, it also acts to antagonize tumorigenesis in certain genetic contexts. A clearer understanding of the tumour suppressive function of aneuploidy might reveal new avenues for anticancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endoreplication: polyploidy with purpose.

              A great many cell types are necessary for the myriad capabilities of complex, multicellular organisms. One interesting aspect of this diversity of cell type is that many cells in diploid organisms are polyploid. This is called endopolyploidy and arises from cell cycles that are often characterized as "variant," but in fact are widespread throughout nature. Endopolyploidy is essential for normal development and physiology in many different organisms. Here we review how both plants and animals use variations of the cell cycle, termed collectively as endoreplication, resulting in polyploid cells that support specific aspects of development. In addition, we discuss briefly how endoreplication occurs in response to certain physiological stresses, and how it may contribute to the development of cancer. Finally, we describe the molecular mechanisms that support the onset and progression of endoreplication.
                Bookmark

                Author and article information

                Journal
                Mol Cytogenet
                Mol Cytogenet
                Molecular Cytogenetics
                BioMed Central
                1755-8166
                2013
                17 December 2013
                : 6
                : 59
                Affiliations
                [1 ]Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
                [2 ]Departments of Cytogenetics and Haematology, Pathology North, Royal North Shore Hospital, Sydney, NSW, Australia
                [3 ]Department of Pathology, Cancer Genetics and Cytogenetics, University of Otago Christchurch, Christchurch, New Zealand
                Article
                1755-8166-6-59
                10.1186/1755-8166-6-59
                3906908
                24341401
                81f2d8b8-f598-48cd-9d90-4774784415d9
                Copyright © 2013 Singh et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 September 2013
                : 25 November 2013
                Categories
                Research

                Genetics
                gain of 1q,myelofibrosis,tetraploidy,snp array,polyploidy
                Genetics
                gain of 1q, myelofibrosis, tetraploidy, snp array, polyploidy

                Comments

                Comment on this article