2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ΔNp63 is a pioneer factor that binds inaccessible chromatin and elicits chromatin remodeling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          ΔNp63 is a master transcriptional regulator playing critical roles in epidermal development and other cellular processes. Recent studies suggest that ΔNp63 functions as a pioneer factor that can target its binding sites within inaccessible chromatin and induce chromatin remodeling.

          Methods

          In order to examine if ΔNp63 can bind to inaccessible chromatin and to determine if specific histone modifications are required for binding, we induced ΔNp63 expression in two p63-naïve cell lines. ΔNp63 binding was then examined by ChIP-seq and the chromatin at ΔNp63 targets sites was examined before and after binding. Further analysis with competitive nucleosome binding assays was used to determine how ΔNp63 directly interacts with nucleosomes.

          Results

          Our results show that before ΔNp63 binding, targeted sites lack histone modifications, indicating ΔNp63’s capability to bind at unmodified chromatin. Moreover, the majority of the sites that are bound by ectopic ΔNp63 expression exist in an inaccessible state. Once bound, ΔNp63 induces acetylation of the histone and the repositioning of nucleosomes at its binding sites. Further analysis with competitive nucleosome binding assays reveal that ΔNp63 can bind directly to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad.

          Conclusion

          Overall, our results demonstrate that ΔNp63 is a pioneer factor that binds nucleosome edges at inaccessible and unmodified chromatin sites and induces histone acetylation and nucleosome repositioning.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13072-021-00394-8.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.

          Genome-scale studies have revealed extensive, cell type-specific colocalization of transcription factors, but the mechanisms underlying this phenomenon remain poorly understood. Here, we demonstrate in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions. PU.1 binding initiates nucleosome remodeling, followed by H3K4 monomethylation at large numbers of genomic regions associated with both broadly and specifically expressed genes. These locations serve as beacons for additional factors, exemplified by liver X receptors, which drive both cell-specific gene expression and signal-dependent responses. Together with analyses of transcription factor binding and H3K4me1 patterns in other cell types, these studies suggest that simple combinations of lineage-determining transcription factors can specify the genomic sites ultimately responsible for both cell identity and cell type-specific responses to diverse signaling inputs. Copyright 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Integrated Encyclopedia of DNA Elements in the Human Genome

            Summary The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure, and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall the project provides new insights into the organization and regulation of our genes and genome, and an expansive resource of functional annotations for biomedical research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              BLAT---The BLAST-Like Alignment Tool

              W. J. Kent (2002)
                Bookmark

                Author and article information

                Contributors
                ssinha2@buffalo.edu
                mjbuck@buffalo.edu
                Journal
                Epigenetics Chromatin
                Epigenetics Chromatin
                Epigenetics & Chromatin
                BioMed Central (London )
                1756-8935
                17 April 2021
                17 April 2021
                2021
                : 14
                : 20
                Affiliations
                [1 ]GRID grid.273335.3, ISNI 0000 0004 1936 9887, Department of Biochemistry, , State University of New York at Buffalo, ; Buffalo, NY 14203 USA
                [2 ]GRID grid.273335.3, ISNI 0000 0004 1936 9887, Department of Biomedical Informatics, , Jacobs School of Medicine & Biomedical Sciences, ; Buffalo, USA
                [3 ]GRID grid.452930.9, ISNI 0000 0004 1757 8087, Present Address: Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, , Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, ; Zhuhai, Guangdong China
                Author information
                http://orcid.org/0000-0001-5320-3678
                Article
                394
                10.1186/s13072-021-00394-8
                8053304
                33865440
                b93bfbe4-542b-43cd-8da4-452f32a950bc
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 17 November 2020
                : 2 April 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000057, National Institute of General Medical Sciences;
                Award ID: R01GM132199
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000069, National Institute of Arthritis and Musculoskeletal and Skin Diseases;
                Award ID: R01AR073226
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Genetics
                p63,pioneer factor,nucleosome,chromatin modification
                Genetics
                p63, pioneer factor, nucleosome, chromatin modification

                Comments

                Comment on this article