111
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Comparison of Brain Gene Expression Levels in Domesticated and Wild Animals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative ( Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30–75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats ( DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.

          Author Summary

          Over the millennia, humans have turned a range of wild animal species into what we today know as domesticated animals. Domestication has greatly influenced human history and evolution. The changes in the animals are even more drastic. Domesticated animals differ from their wild relatives in appearance, physiology, and behavior. Although these differences are mostly genetically encoded, little is known about which genes contribute to these domestication traits. Changes in gene expression have long been proposed to lead to phenotypic changes in evolution. In this work, we therefore compared gene expression in brains of dogs and wolves, pigs and boars, and domesticated and wild rabbits and guinea pigs. For each of the four domesticated species, we identify gene expression differences that could correlate with behavioral differences compared to wild animals. The majority of expression differences are unique to each domestication event, suggesting that domestication has proceeded through different genetic routes in different species.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional landscape of the yeast genome defined by RNA sequencing.

          The identification of untranslated regions, introns, and coding regions within an organism remains challenging. We developed a quantitative sequencing-based method called RNA-Seq for mapping transcribed regions, in which complementary DNA fragments are subjected to high-throughput sequencing and mapped to the genome. We applied RNA-Seq to generate a high-resolution transcriptome map of the yeast genome and demonstrated that most (74.5%) of the nonrepetitive sequence of the yeast genome is transcribed. We confirmed many known and predicted introns and demonstrated that others are not actively used. Alternative initiation codons and upstream open reading frames also were identified for many yeast genes. We also found unexpected 3'-end heterogeneity and the presence of many overlapping genes. These results indicate that the yeast transcriptome is more complex than previously appreciated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genomic basis of adaptive evolution in threespine sticklebacks

            Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of gene expression levels in mammalian organs.

              Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2012
                September 2012
                27 September 2012
                : 8
                : 9
                : e1002962
                Affiliations
                [1 ]Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
                [2 ]Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
                [3 ]CAS–MPG Partner Institute for Computational Biology SIBS, Shanghai, China
                [4 ]CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal
                [5 ]Departamento de Zoologia e Antropologia–Faculdade de Ciências da Universidade do Porto, Porto, Portugal
                [6 ]Fernan Vaz Gorilla Project, Port-Gentil, Gabon
                [7 ]Department of Biology, University of Turku, Turku, Finland
                [8 ]Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ciudad Real, Spain
                [9 ]Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
                [10 ]Department of Behavioural Biology, University of Münster, Münster, Germany
                [11 ]IFM Biology, Division of Zoology, Avian Behaviour Genomics and Physiology Group, Linköping University, Linköping, Sweden
                University of Washington, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FWA SP. Performed the experiments: FWA AA-P MH. Analyzed the data: FWA MS. Contributed reagents/materials/analysis tools: FWA MC OT JAB-A IZP LT RV NF SK PJ. Wrote the paper: FWA SP.

                Article
                PGENETICS-D-12-01015
                10.1371/journal.pgen.1002962
                3459979
                23028369
                ef8cc867-6703-43f5-bd46-3ebea18dee4a
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 April 2012
                : 6 August 2012
                Page count
                Pages: 16
                Funding
                This work was funded by the Max Planck Society and a European Research Council grant (233297, TWOPAN) to SP. FWA is supported by a grant from the German Science Foundation (DFG grant AL 1525/1-1). MS was supported by a CAS young scientists fellowship (2009Y2BS12) and a National Science Foundation of China research grant (31010022). JAB-A is supported by fellowship (SFRH/BPD/65464/2009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Forms of Evolution
                Parallel Evolution
                Comparative Genomics
                Genetics
                Gene Expression
                Genomics
                Comparative Genomics
                Functional Genomics
                Genome Expression Analysis

                Genetics
                Genetics

                Comments

                Comment on this article